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Abstract 

A coarse-grained molecular dynamics (MD) method, dissipative 

particle dynamics (DPD), is employed to simulate the breakup of 

liquid sub-micron liquid cylinders and jets.  Consistent with prior 

findings employing MD, Rayleigh’s criterion for capillary 

breakup of inviscid liquid cylinders is shown to be applicable. 

Thermal fluctuations are the primary mechanism inducing 

instability and this leads to the formation of almost monodisperse 

drops. The parameters varied in the study include the cylinder 

radius, thermal length scale, viscosity, and surface tension. The 

breakup time does not show the same scaling dependence as in 

capillary breakup of liquid cylinders at the macroscale. The time 

variation of the radius at the point of breakup agrees with prior 

theoretical predictions from expressions derived with the 

assumption that thermal fluctuations lead to breakup. The 

thermal fluctuations accelerate the breakup of liquid jets at the 

submicron scale. The time evolution of minimum jet radius as 

given by prior theoretical analysis is recovered.  

Introduction  

The formation of drops from the breakup of sub-micron scale 

liquid cylinders and jets is important in many current and 

emerging applications, such as nanoscale machining, super-fine 

ink-jet printing, and drug-/gene-delivery to biological cells. The 

breakup of liquid cylinders and atomization of liquid jets at the 

macroscale has been a topic of study for over a century [14, 12], 

but sub-micron scale applications have gained in importance only 

recently. Computational studies of two-phase flows at the 

macroscale are complex because of the need to track highly 

deforming interfaces and develop numerical schemes which can 

be employed for compressible (gas) and incompressible (liquid) 

fluids [3]. At the sub-micron scale, the assumption that the fluid 

properties can be represented by statistical averaging may not 

hold. At this scale, molecular dynamics (MD) is an obvious 

choice as a numerical technique [10]. For example, it has been 

applied to study the behaviour of nanodrops [5] and mixing 

processes at the nanoscale [8]. Nevertheless, the method is 

computationally expensive. There are approaches which are 

computationally less expensive but which sacrifice precise 

information about dimensions and scales because of lack of 

adequate information about coarse graining. These approaches 

are, however, very useful to determine trends in physical 

behaviour at the sub-micron scale. In this work, the dissipative 

particle dynamics (DPD) approach will be applied to study the 

breakup of liquid nanocylinders and nanojets [4,6,7]. An 

important question here is whether the method can capture the 

physics associated with sub-micron liquid cylinder and jets. 

 

 

The Computational Model 

The DPD method is particle-based in which each particle 

represents millions of molecules. The governing equations are 

written down for the particles and the equations contain 

quantities which represent the collective behaviour of the 

millions of molecules they represent. A detailed description of 

the specific model employed here can be found in Ref. [15].   

The position and velocity of a DPD particle i of unit mass are 

computed from Newton’s laws of motion  
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where ri, vi and fi denote the position, velocity and force vectors, 

respectively. The force has three components: the dissipative 

force component D

ijF which is responsible for the viscous effects 

in the DPD system, the random force R

ijF which compensates for 

the lost degrees of freedom from coarse-graining, and the 

conservative force C

ijF which accounts for the configurational 

energy of the DPD system. These forces maintain an isothermal 

system.  The functional forms of the inter-particle forces between 

particles i and j are given by 

( )( ) ,

( ) ,  and

( )
.

D D

ij ij ij ij ij

R R

ij ij ij ij

ijC

ij ij

ij

r

r

r

r



 



  




 



F e v e

F e

F e

    (2) 

Here, eij is a unit vector given by /
ij ij ij
e r r , where rij=ri-rj, 

vij=vi-vj, γ is the amplitude of the dissipative force, σ is the 

amplitude of random force, ωD and ωR are the weight functions 

for the dissipative and random force, respectively, and ψ is the 

free energy per particle. Since DPD is a short-range model, the 

weight functions are chosen such that their values go to zero 

beyond the cut-off distance, i.e., each particle interacts only with 

particles which are within the cut-off distance.  The term ij in 

Eq. (4) is a random variable which has zero mean, unit variance, 

and is uncorrelated in time. It follows Gaussian statistics.  

     



The application of the fluctuation-dissipation theorem to the DPD 

system gives the following relationship between the amplitudes 

and the weight functions of the dissipative and random forces [4]: 
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In this work, the following functional form for the weight 

functions in the expressions for the dissipative and random forces 

have been chosen: 
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These weight functions depend on the inter-particle separation r 

and the cut-off radius rc.  

 

The inter-molecular forces between liquid-liquid molecules, gas-

gas molecules and liquid-gas molecules are different. The 

differences give rise to phase segregation and the macroscopic 

property of surface tension. In this work, the mean-field theory-

based model of Tiwari and Abraham [15] is used. The 

conservative force C
F  is expressed as 
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where ψnon-ideal denotes the non-ideal part of the free energy, ρ is 

the density, and κ is a model parameter that controls the strength 

of surface tension; it is related to the second moment of the 

attractive part of interaction potential between atoms/molecules. 

In Eq. (5) the first term is responsible for phase segregation and 

the second for surface tension. The expression for free energy is 

derived from the van der Waals equation of state 
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where p denotes the pressure, ρ the density, kB the Boltzmann 

constant, T the temperature, and a and b are parameters of the 

equation of state which are related to the zeroth-moment of the 

attractive part of the interaction potential and the exclusion 

volume effects, respectively.  

 

We see from Eq. (5) that the surface tension term 

depends on the gradients of density. The density ρ in the vicinity 

of particle i is calculated using the following expression 
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where w denotes the normalized weight function, j denotes a 

particle tag, r denotes the separation, and N denotes the total 

number of particles. We choose the Lucy weight function given 

by 

3

c

c

3
1 1        if r r

( , ) ,

0                                   if r r

c c c

r r
c

w r r r r

   
     

    




   (8) 

where r denotes the inter-particle separation, rc denotes the cut-

off radius and c denotes the normalization constant which has a 

value 25 / cr for two-dimensions and 3105/16 cr
 for three-

dimensions. Using the definition of density in Eq. (7) and 

substituting the free energy obtained from Eq. (6) into Eq. (5), 

the final form of the inter-particle conservative force is obtained 

as 
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where 
(1)

ij
w   and 

(3)

ij
w  denote the first and third derivatives of 

the weight function in Eq. (8) with respect to the interparticle 

separation. The parameters that are required for specifying the 

interparticle conservative force are a, b, κ, rc and kBT. 

 

The DPD equations of motion are integrated using the following 

modified-Verlet scheme by Groot and Warren [6]: 
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where r, v and f denote the position, velocity and force vectors, 

respectively, t denotes the time, i denotes a particle tag, and λ 

denotes an empirical parameter. The quantity v  is a guessed 

value of the velocity. This guess is necessary because the force 

depends on velocity as seen from the third line in Eq. (10). 

 

Results and Discussion 

When the breakup occurs at the sub-micron scale, thermal 

fluctuations induced as a result of the thermal energy possessed 

by atoms/molecules can play a dominant role in the breakup 

process in addition to the classical mechanisms which arise from 

an imbalance of surface tension forces and internal and external 

pressure forces. In fact, these thermal fluctuations can accentuate 

the classical mechanisms. To characterize the influence of 

thermal fluctuations, a thermal length scale lT can be defined as 
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where kB denotes the Boltzmann constant, T the temperature, and 

σs the surface tension. This length scale may be compared to a 

physical length scale such as the radius of the liquid cylinder. 

 
              t = 50                             t = 100                               t = 150  

           (c) t = 150 

 
            t = 200                            t = 250                          t=350                 (f) t = 300 
Figure 1. Evolution of instabilities in a liquid nanocylinder leading to 

breakup. 

 
The computational domain consists of a three-dimensional box 

with periodic boundary conditions in all three directions. A liquid 

cylinder is initially positioned as shown in Fig. 1. The liquid to 

gas density ratio is about 100. The initial arrangement for the 

particles is a uniform cubic arrangement. Other parameters 

employed for simulation of nanocylinders and nanojets are given 

in Table 1. 

 

As the computations proceed, the particles fill the chamber to 

achieve a liquid-vapor distribution corresponding to the selected 

state point. It is useful to consider a non-dimensional wave 

number  
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where λ is the wavelength of the disturbance. The maximum 

possible value of λ is the axial length of the domain. Based on 

Rayleigh’s criterion [11], when k is less than 1, instabilities lead 

to cylinder breakup as multiple modes of instability are captured. 

In fact, this criterion is met by the simulations. The origin of the 

instabilities is, however, thermal fluctuations, i.e. molecular in 

nature. The consequence of this is twofold: first, the drops that 

are generated are close to monodisperse whereas in macroscale 

Rayleigh breakup, the drops are polydisperse; second, the time-

dependent behaviour of the break-up process is different from 

that at the macroscale. 

 
Parameter Value in 

DPD units 

kBT 1.6 x 10-2 

Mean-field critical 

temperature 

3.57 x 10-3 

a (van der Waals 

parameter) 

3.012 x 10-3 

b (van der Waals 

parameter) 

2.5 x 10-2 

  1.3 x 10-1 

  1.0 x 10-3 

Time step δt 1.0 x 10-2 

rc 1.05 

g (Body force) 7.5 x 10-3 

N 50000 

Re 0.86 

                           (i) t = 450 
Table 1. Parameter for simulations (some of the parameters are applicable 
only for nanocylinders) 

The breakup time Tb of a cylinder arising from capillary 

instabilities has been shown to be [2] 
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where μl is the dynamic viscosity, ρl is the density, σs is the 

surface tension, r is the radius of the cylinder,  k is the non-

dimensional wave-number, and  I0(k) and I1(k)   are modified 

Bessel functions. Equation (13) is applicable when viscosity is 

neglected, and Eq. (14) when viscosity is included, for capillary 

breakup of liquid cylinders at the macroscale. These equations 

have been shown not to hold at the nanoscale [3]. Also, from 

linear instability theory [2,9] it can be shown that 
te  ,     (15) 

where  is the displacement of the interface,   is the amplitude 

of the disturbance,   is the growth rate, and t is the time. For 

thermally-induced breakup,  is a function of the temperature of 

the system and, say, is proportional to the thermal length scale
Tl . 

Another difference is related to the minimum radius of the 

breakup point rmin. At the macroscale [1, 13]: 

 min 0 ,r r T t       (16) 

where r0 is a constant, T denotes the breakup time and t the 

current time. When thermal fluctuations play a dominant role, 

they tend to accelerate the breakup process. Eggers [3] has shown 

that the following relationship then holds for the minimum radius 

rmin: 
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where r1 is a constant and other symbols have the same meaning 

as in Eq. (1). The DPD simulations follow this trend quite well as 

shown in Fig. 2 

 

 

Figure 2. Computed and analytical fit of cylinder radius as a function of 

(Tb-t). 

 

 

Figure 3. Computational setup 

Liquid nanojets have also been the subject of study in recent 

years both analytically [3] and using molecular dynamics [10]. 

The essential physics that is discussed above for liquid nano 

cylinders also holds for nanojets. Figure 3 shows the 

computational setup for the DPD nanojet simulations. Liquid is 

initially confined in the syringe shown. A body force acts on the 

particles in the syringe and causes them to move. While this 

depletes the number of particles in the syringe, the constant body 

force acting on the particles forces them to exit with an almost 

constant injection velocity. The walls of the syringe have frozen 

particles and the attractive component of the conservative force is 

removed so that the entry of particles into the wall will be 

limited. Removal of the attractive component of the force also 

prevents the liquid particles from sticking to the wall when 

injected. 

Figure 4 shows the time evolution of a liquid nanojet. Thermal 

fluctuations initiate instabilities. These instabilities lead to a 

thinning of the jet and breakup. Breakup occurs in regions where 

symmetric double-cone structures form. The elongated neck 

which is observed in macroscopic breakup of liquid jets is not 

present here. As a result, satellite drops do not form.  
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Figure 4. Computed liquid nanojets 

 

Conclusions 

Molecular dynamics has been shown to be a powerful tool for 

studying the physics of fluids at the sub-micron scale. In this 

paper, it is shown that the coarse-grained molecular dynamics 

simulation method, dissipative particle dynamics, can also be 

employed to study the physics at the sub-micron scale. The 

physics of liquid breakup at the small scale differ from that at the 

macro scale in significant ways. Breakup is accelerated by the 

role that thermal fluctuations increasingly play as the scale is 

decreased. Nevertheless, the Rayleigh breakup criterion holds for 

the scales considered here. It appears that once the instabilities 

are initiated, the subsequent physics of wave growth remains 

similar to that at the macroscale.  Breakup occurs symmetrically, 

i.e. no satellite drops are formed. Hence, the drops are generally 

monodisperse whereas they are polydisperse in macroscale 

breakup. 
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